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CONTRIBUTION TO THE THEORY OF HEAT TRANSFER AT STRONG /1
TEMPERATURE AND PRESSURE GRADIENTS IN THE DIRECTION OF ;
THE FLOW, FOR PLANE ROTATIONALLY SYMMETRICAL i
BOUNDARY IAYERS f

A.Walz*

N 581%

Analysis showing the Nusselt classical theory and classical

methods cammot be applied to the solution of heat-transfer

problems in high-speed aerodynamics, because they neglect

the effect of temperature gradients in the direction of flow.
For laminar boundary layers, this effect can be substantial. ‘
An approximate theory is developed which takes into account
the effect of such temperature gradients for any temperature

S distribution at the wall and which is applicable to both in-

|

~ : compressible and compressible turbulent botmdaify layers For
o similar boundary-layer solutions, the theory demonstrates

(in analytical form) that the effect of heat transfer of a
pressure gradient in the direction of flow can also be ap-
preciable. A distinctive feature of the proposed theory is
that the temperature and velocity profiles of the boundary |
layer need not be expressed in series form. The only un- |
knowns besides the boundary-layer thickness are a form para-

meter H(x) for the velocity profile and a ™modification para-

meter® K(x) for the temperature profile. These three unknowns

can be determined from a simultaneous system of three first-
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order differential equations. The theory is applied to

several examples. ‘\\AM

1. Preliminary Remarks

i The problem of heat transfer between solid walls and flowing media touches
ﬁupon two large disciplines, namely, thermodynamics and fluid mechanics. For
‘both disciplines, this type of heat transfer had for long been a theoretically ‘
extremely difficult "marginal® problem, whose solution had of necessity been E
jleft to purely empirical means.
| Only after development of the boundary-layer theory by L.Prandtl (Bibl.l)
and the similitude theory of heat transfer by W.Nusselt (Bibl.2), at the begin-

. nlng of this Century, did strict solutions or (in the case of turbulent boundary

: flayers) satisfactory estimates of this problem become possible, in some impor-

|

%tant special cases. The well-known theoretical and semi-empir:ricé.rl laws whlch,t
‘in the case of forced convection, express the Nusselt "heat transfer coeffi- |
‘cient" Nu as a function of the Prandtl number Pr (= ratio of impulse transfer
‘4o heat exchange) and of the Reynolds number Re (= ratio of inertia force to
viscosity force), were important results of this work.

Recently, the problematics of heat transfer was further complicated: 1In

( irapidly flowing media, energy conversions (generation of heats of compression

‘' iand friction) take place which - over the variation of physical constants with
" ‘temperature’and pressure - result in a strong interaction of the flow and tem-
perature boundary layers. The laws of conservation of momentum and energy
which were independently solvable when treating the heat transfer problem on

the basis of Nusselt's similitude theory with constant physical constants, Vi

|13

(e}

;can be solved in most modern problems o:ily as coupled systems of partial dif-




ferential equations. In addition, the boundary conditions are frequently much
more complex because of certain effects, such as strong wall-temperature and |
’pnessure gradients in the direction of flow.

Due to the development of efficient mathematical and computational (specl-g
i‘lwlly electronic) means, new possibilities were created for an exact or ap- ‘
;proximate solution of this difficult problem complex of heat transfer.
| Modern mathematical aids include methods for an approximate solution of
(partial differential equations by averaging the equation result in one coordi-

nate direction (by forming so-called integral conditions as ordinary differentis

L]

al equations for free parameters of a solution argument); these are methods
‘related to Galerkin's method (Bibl.3), familiar to mathematicians.

In this paper, after a brief review of the classical theory of flow and

.gtemperature boundary layers, we will demonst;-at.e that the use of suitable solu-
gtion arguments and the méthod cfrintegfa;l condif,ions ellmlnatesthe need fd'rw
?excessive simplifications, which were required for most of the conventional
%solutions. This will furnish an answer to some questions on heat transfer in |
-technically important problems, which (so far as known to the author) have nevei-

been solved.

2. Problem Formulation | 53

One of the basic simplifications of most known theories (for example) is

~+the assumption that the temperature T, q‘f the wall, along which the heat trans-

=1

fer takes place, remains constant in the direction of flow x (—~="- = 0) and
-that no pressure gradient exists in the direction of flow dp_ . 0); see, for
dx

' lexample, L.Crocco (Bibl.,) and E.R.van Driest (Bibl.5).

D.R.Chapman and M.W.Rubesin (Bibl.6) in 1949 as well as H.Schlichting
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(Bibl.7) in 1951 were able to demonstrate, in the case of laminar incompressible
and compressible boundary layers, that at least the influence of the variable
wall temperature on the heat transfer may be considerable.

In a frequently quoted report on similar solutions of the compressible ‘ i
Jaminar boundary layer with heat transfer, T.V.Li and H.T.Nagamatsu (Bibl.8) |

!
i
j
i
i

:showed that a pressure gradient, in the direction of flow, will have an - al-

though moderate - influence on the solution.

In the theory to be developed here, the influence of the gradients gi"
and —g%z— is to be determinable for compressible laminar and turbulent boundary
layers.

This theory also covers the special case of heat transfer for very thin
ithreads exposed to longitudinal flow, in a rather simple manner; this case is
of considerable importance in the technique of the filament productlon from

thermp]astlc materials in blast jets. ;

The theory itself, however, will be restricted in the conventional manner {
to the case of stationary flow at high Reynolds numbers, in the sense of
Prandt1l's boundary-layer theory. Emphasis will be on the case of ideal gases, |

with the usual value of unity given to the Prandtl number (Pr = 1), as in all

[ S

- —other theories. In this case, the equation of state for ideal gases
9 PR /p = density ‘
3' R T p = static pressure 1)
R = gas constant
g = acceleration of gravity,
|
~ |as well as Sutherland's law for the temperature dependence of the molecular
fviscosity : P reow lf‘ ;
-7 7'3"- T in 2KELVI ‘i
= ’ 2
/a.(T} 1486 - 10 \ o in "P‘f‘/m (2)




at C = 110.6 for air will be valid. The specific heats ¢, and ¢, as well”;as |
‘their ratio » = —%3— will be assumed as constant. Finally, only the pmcticalléy
vmost important case of heat transfer by forced convection will be treated here,;
-in which the buoyancy forces, due to density differences, can be neglected wrbh,
:respect to inertia, pressure, and viscosity forces. f
In the case of turbulent flow, only the time-average values of the veloci—-;é
ties, pressures, temperatures, and physical constants are of interest for our ‘
particular problem complex. The momentum and heat exchange, increased by the
turbulent motion, is taken into consideration by ®effective® values for the

viscosity and the heat transfer coefficient p. and A,, as the sum of the molecuei-

lar and Mapparent®™ quantities:

The apparent values p, and A, are obtained from well-known empirical laws [see,
for example, H.Schlichting (Bibl.9)].
The Prandtl number Pr, in the case of a turbulent boundary layer, must be

formed with the effective quantities u, and A,:

(2c)

3. Physical Principles | /5

i

Let us assume a two-dimensional flow along a fixed boundary. The x-axis

Eof the Cartesian coordinate system is assumed to coincide with the (only slight-é-
1y curved) boundary. The amount of heat q(x) (energy per unit time and unit
;area), transferred at a fixed point x in the y-direction perpendicular to the

;;wall, will then, because of the viscosity condition of the flow medium along ]

|
|




the boundary, be completely given by the Fourier heat conduction formula

g, K==(235) ©)
. 3 y=0
even in the case of a turbulent boundary layer. Equation (3) defines the molec1:1-

i
i

A =21 (T)ﬁ%} | )

of the flowing medium, as a known physical constant which depends only on the

lar "heat transfer coefficient®

temperature T.

i

The problem of heat transfer between a stationary wall and a flowing medlugl

thus is solved for lamimar or turbulent boundary layers, at the general problem

+

atics and boundary conditions of Section 2, if the temperature gradient
(_%1‘7_ , = along the wall is known¥.

Thus, the temperature field T(x, y), i.e., under our assumption of high |

jReynolds number, the temperature boundary layer, must be determined in its in- r
teraction with the flow boundary layer. In addition to the influence of forcedi
convection and heat conduction, the temperature variations due to compression 1
and frietion must be considered in full.
The laws of conservation of mass and momentum have the usual form in our |

;problem formulation. It only must be taken into consideration that the physical

§consta.nts are variable. In formulating the law of conservation of energy, it

LA

.iis preferable to use as basis the concept of total energy h, as the sum of  /{

enthalpy and kinetic energy (all energies referring to unit mass):

e 1 t " H V
w, v . W~ (because of — < 1 in the (5)
= ( +t—=%+—2Lyr - u
z" . N y 3 V+A &+ = boundary layer)

1* An additional heat transport by radiation at high temperatures can be readily
lcalculated in accordance with conventional laws [see, for example (Bibl.12)]. |

i
i
|
i \
1 \
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In an isentropic flow, i.e., outside of the flow and temperature boundary layer,
the total energy h is known to be constant. Within the boundary layer, this |
total energy can be changed only by heat supply or heat dissipation due to heat
vconduction or by the work of shear stresses. The work of pressures (technical
work as well as compression or expansion work) does not explicitly enter this
Jenergy balance since, on introduction of the total energy, the interaction be- :

tween kinetic energy and enthalpy is implictly covered.

L. System of Equations

For the assumed stationary two-dimensional boundary-layer flow (at large
Reynolds number), the laws of the conservation of mass, momentum, and energy

have the following form: ‘ |

(6}

(7}

e

b v e bbb £ =

? g r ¢ ;5:8 : Effective shear stress(8a)

with the supplementary relations (1) - (L) for p, Be, and A, . For the six  /§

éunknowns u, v, h, p, ke, and A, , a total of six equations are thus available.

On multiplying eq.(7) by the velocity components u, an equation for the

7




mechanical energies is obtained:

T ut . :
T U ek e
¥ 4 -y 1

Subtracting eq.(9) from eq.(8) and taking eq.(5) into consideration will yield
jthe well-known equation for the enthalpy boundary layer
7(8ute) Q(svi) dp

For the case of ideal gases, with

L=cpT f (11)

eq.(10) is the equation for the temperature field.

o The boundary conditions for eqs.(6) - (10) are as follows:

1:0 : L=y =0 . |
| S ! (12)

’f“"é . u*u‘ “ "
A prescribable boundary condition (problem formulation) is the pressure p(x) =
= ps(x) impressed on the boundary layer and connected with the velocity ug(x)
" along the edge of the boundary layer by the Bernoulli equation

(13
(1

e

The asymptotic transition from u to ug and from T to Ty ,‘at the assumed /8
%large Reynolds numbers, takes place practically within a boundary-layer region

whose approximate thickness in the case of the flow boundary layer is denoted

;‘by 83 and in the case of the temperature boundary layer by ;. In the case of

:fa laminar boundary layer, according to Prandtl's approximation rule (Bibl.1l),

-

8 ]




S is valid (using -—L—- ~ 1) for the order of magnitude of zero of the heat conduc-

the following applies in first approximation:

(15) (16}

83 L 0 VYL
T

.

gs“‘L ‘ » k }:J;v‘”_ ‘
‘qa f\s l P\'= #Aip_ ; c ~ g? (17) (17a) (17v)

On the basis of egs.(15) and (16), this yields !

f
'

§_§ a ‘/_ﬁ: (18?’
St b |

: = |
Thus, we have 6y = &; for Pr = 1. The flow and temperature boundary layers

with

i
i

in this case which is approximately given for gases (for example, air at Pr =
= 0.72)and for a turbulent boundary layer, have practically equal thickness.

For Pr > 1, i.e., in the case of laminar flow of fluids (water: Pr = 7 at 20°C;

0il: Pr = 1600 at 20° C), the temperature boundary layer - according to eq.(18) -
"~ is much thinmner than the flow boundary layer.

| The thicknesses 8s and 6y are used only for estimates. In an exact solu- !
Ation of the system (6), (7), (8), these quantities do not enter. ‘
| The estimating formulas (15) and (16) for 6; and 6; will be used by us for!
;simplifying eqs.(8) and (10). Since the wall distances, within the temperature;

1
t'boxmdary layer, are of the order of magnitude of y~ 6y ~ ——L—- the following

R

F
.tlon terms in eqs.(8) and (10):

; (? ( xaﬁ] (%3’3

Y

(19

Zog)

and thus also s increase up to an order of magnitude of

dTe
dx 3x

7 If we let
|




AT Tw ~Ty

(20)

Yy X‘r
3 oT 5
then Box (7\ Bx) will be smaller than =5 (A ) by a factor of I: ~
~ 3

Vv PrR, |
i
Thus, using the restriction of —2*— to |
dTw 2T < Te-Tg ;
t——— 4 (21.)
M n " J-r J
the term —— (A —=-) inegs. (8) and (10) can be neglected for y TN
ox ( Bx> as- & ( oy )' :

In each individual case, it must be checked whether the condition (21), which

|

dT
dx" , is satisfied.

With this simplification which, in an analogous manner, can be used also

excludes extreme temperature gradients

for the turbulent boundary layer, egs.(8) and (10) can finally be written as |

follows [taking eqgs.(5) and (6) into consideration]:

Ak W _

U tSY—— =
o __(r‘n) Pt 2wy P
A 9'3 P ’33
i ——— P - = —— "'-" + ‘ i
R TS T 'a gy ) @
%’For Pr = 1, eq.(22) is further simplified to ‘
(21)
|
o




but remains valid for arbitrary compressible external flows (for arbitrary

Spressure gradients di ) with or without heat transfer, possibly also for turbui;

lent boundary layers.

5oEJract Solutions for the Temperature Boundary layer

5.1 Pr = 1, Heat-Insulated Wall, -2 rbitrary

In this case, ) , f

h = const = hg (25);

is a particular integral of the equation (2,), linear in h, so that the total
energy h is constant also within the boundary layer despite the created heat of
friction, at an arbitrary pressure gradient 1-)9(—

From the definition equations (5) and (11) for h and i, the "temperature

fzprofile", L o B
t = - 26
Ty w) cr.‘ ( )
is immediately obtained for gases. If, using the well-known gas-dynamic relatic;n
2 i
43 A _R+4 M; } kinetic energy (275
= =1 enthalpy  ?
e’y L i |
~the local Mach number A /1
(28)
u
g
=l = (29)
T
is obtained for eq.(26). Along the wall y = 0, u = 0, the Mcharacteristic

1




temperature® T, prevails. In our case, this temperature is equal to the adi-

abatic stagnation temperature T,

Tey . 1o _ L VY
Tl T EN]

On the basis of eq.(29), the flow boundary layer can be calculated according toi

known methods [see for example (Bibl.9) p.318].

5.2 Pr Arbitrary, b = 0, <9 = ¢, = = 0, (9P = 0, T = const);
Heat Transfer Arbitrary; (-—;—y—) Arbitrary

According to L.Crocco (Bibl.,) and E.R.van Driest (Bibl.5), the qmntltles

x and y in eqs.(7) and (23) are replaced by the independent variables x and u.

"Using the dimensionless shear stress

T - s uzﬂ (Rp= 3“;“:7. ) (31)

and the dimensionless enthalpy

e . L |

, alrre G2
egs.(7) and (23) assume the form

* "o e WU . (33)

: : + —— =0 i i

Z T 7/% s Uy e

et ff:“ .t"*l u"' (3@

— + (4 r) S - = .

‘ |

12 |




where the prime indicates a differentiation to ‘1116 . The boundary conditions /12

will then be
&«
- PR Lp I
jé =0 . e ) = — =0 ¢ = ‘“f
ug Ty 'Y dx- A :
" | (35)
u_4+ - Tt T =0 . ¢ aLJa“
‘ Y (
WUg _
For arbitrary but constant Prandtl numbers Pr and for a shear stress distribu-
T* T
tion —» = ——, assumed as known, eq.(34) which is linear in i can be inte-
w

grated. The solution reads

Here , f1 and f, are certain integral expressmns that can be evaluated ’ at 7

known shear stress distribution, for arbitrary Prandtl numbers.

The following is valid:

Reynolds analogy factor (41)

characteristic temperature (42)
coefficient (recovery factor)

«* -

Lc'é*'%(( tx '_A—/}) (ZJ), for gases-"re "T;{_& 4




Since 'r':, is not known at first, the system (33) - (36) can be solved only /13
by iteration. However, eq.(36) indicates that the outer boundary y = & (-—il?- =

T

= - = ) is located at a point where f; and f; practically reach a value of 1.
6

In the special case of Pr = 1, the difficulty due to the unknown slope of

(_‘1116 ) is eliminated since the exponent Pr - 1 = 0 in egs.(39) and (ho)makesa.n

‘integration of eq.(34k) independent of the shear stress distribution. For Pr =

= 1, this will yield .
| w | " |
54~ w [ Sa= 71) 5) (16)
A=r=A4 Vole=t, T ='T.;' (47) (wS
while the solution (36), at i = ¢,T has the form

T 4) Tru M To — \w

= — i
T | T T

-1+ To Tw('~-4) ‘6‘1 .,_[4“ )l

Consequently, the flow and temperature boundary layers are intimately linked

W)

also in this case. In this connectivity law, not only the Mach number My but
To = T
also the parameter (—L—,IT'-) plays an important role for the heat transfer.

According to eq.(5) and at Pr = 1, the total energy h will then read
"

§ A .-)‘8 om -,
| R 5

2
For an incompressible flow, the kinetic energy 1;

;the enthalpy c,T so that hwg = ¢ T is valid. Then, eq.(50) for Mg -0, To —

in h can be neglected for

- Tb will read as follows:




‘Consequently, the boundary layers of both temperature and flow are congruent [
in this case.

If the dependence of the functions f; and f; in eqs.(36) on the Prandtl

‘number Pr, at given shear stress distribution s is investigated, for ex-
ample, for the shear stress distribution of the laminar boundary layer over a
plane plate according to H.Blasius (Bibl.10)*, the result plotted in Figs.l
and 2 will be obtained: Here, f; and f; will “practically™ reach the asymptoti
boundary value 1 at relatively small distances from the wall, which decrease

further with increasing Prandt]l number. This corresponds to the estimate

igiven in eq.(16}, according to which the thickness of the temperature boundary ; -

layer decreases with increasing Prandtl number*¥.

For the case of turbulent boundary layers and assuming a linear slope of

the shear stress with distance from the wall,

a result agreeing with Figs.l and 2 is obtained.

# According to E.R. van Driest (Bibl.5), for a laminar boundary layer, the
following expression is valid in satisfactory approximation within the Mach
number range of 0 < My < 4

i s
L R !

** Since Prandtl numbers above 1 generally are in question for liquids, i.e.,
2

ha'’
2

: i s

vanishes in eq.(36) at Pr > 1. In this manner, the theory for Pr > 1 is again

jfor incompressible media, the term with the factor or x;l M% for gases

( 51)

Ly

L2

=1 - ’8‘” [see (Bibl. lh)], ,

simplified. For molten metals, as another example of practically 1ncompre551ble

nmdla with Prandtl numbers much smaller than 1 (mercury with Pr = 0.023 at
20°c), corresponding simplifications of the theory are obtained. -

BECE



5.3 Relations for the Heat Transfer in the Special Exact
Solution according to Crocco and van Driest (Reynolds Analogy)

Using the relation (36), valid for arbitrary Prandtl numbers, eq.(3) will
yield the following relation for the heat q, transferred along the wall at i =

= cpT, after an elementary intermediate calculation: s

r
Qu (Xl = _.()QT) _..(,\JT e 1 T Tw Sp's u’:
or, in dimensionless form, at
i
C 1, i
f =t 2a
as local friction coefficient
v _ _ 4 S Te-Tw . (53?
e‘; “« t s 4 +
Here,
0 R)G _ T —Tn " |
- 7 = =7 gyt it
r “‘ < r T.A&?; - ‘7; —7} (51&)
S s
’
is a parameter for the heat transfer. The entire heat, exchanged along the s
:wall, is obtained by integration of g, (x) in the x~direction. The symbol
: c i
; £ _ (55)
s - %

is known also as Stanton's number which (within the validity range of the theory

described here, i.e., for gf; =0 and -——E— 0) is connected with the Nusselt

number Nu by the relation

N“"ST'PI"V"RL{ (56?

The simple relation (53) for the heat transfer, known also as Reynolds ;

16 R



analogy between friction (c.) and heat transfer (q), is valid in the same manner
for laminar and turbulent boundary layers.

However, this relation becomes uncertain as soon as the assumptions /16

9T _ 5 and 9P~ = 0 are not satisfied. |
dx dx ;

No general exact solution of the system (6), (7), (22), or (23) that woulda

cover the influence of I (by a—x) and -’ is known. Below, we will de-
rive an approximate solution that makes use of physical and mathematical basic
principles, which can be successfully applied to the approximate solution of

the problem of laminar and turbulent flow boundary layers.

6. Basic Principle of an Approximate Solution of General Problematics

In the field of laminar flow boundaries, basic properties of the solutlons
(of the velocity profiles) had been determined in specla.l cases by exact solu—-
rtlons, such as "similar solutions® for accelerated and decelerated flows of the
type of u; ~ ¥ at m = const, in accordance with D.R.Hartree (Bibl.13). These
orienting solutions furnished important criteria for the construction of solu-
tion arguments for velocity profiles, expected in the general problematics [at |
é.rbitrary slope of ug(x)].
| In these cases, arguments for the velocity profile, of the following form
;*were obtained:

! u(r,y! F

I(x)

% - facto
where &5 (x) denotes the boundary layer thickness and H(x) is a forma,"%} the two
unknowns of the solution argument. For determining these unknowns, the integral

lconditions for momentum and energy, derived from egs.(7) and (9) by partial in-

%tegration to y, can be used. This approximate solution is then necessarily

17




identical with the exact solution, for flows of the type ug ~ x*.

In a similar manner, we will use the exact solutions treated in Section 5 |
for constructing a solution argument which contains these exact solutions as /17
special cases, but provides one more - or, if necessary, several more - free |
parameters that permit an adaptation to more general problem formulations. é

Known solution arguments for the temperature profile

_—
T use an expansmn;

in powers of the running length —%— with coefficient functions of the distance
from the wall y [H.Schlichting (Bibl.9)] or in powers of the wall distance y wiﬁh
coefficients depending on x [D.N.Morris, J.W.Smith (Bibl.11)]. In view of the

character of the exact solutions discussed in Section 5, it seems advisable to |

construct the solution argument for with the functions f; and f; of the

exact solution (36) derived by van Driest (Bibl.5) or else, at Pr = 1, to use aﬁ

expansion in powers of the wvelocity -%%— in which case, for physical reasons !

3 , e

[because of eq.(49)], the terms with -%%— and (_§§_> might be sufficient.
4T, d .
The special solution (36), exactly valid for —aé—— =0, —32— = 0, will be
%—zaf-é/,f-cﬁ (s8)

with s
- A |

a=1-le=Tu ., £t Mo b= Teclw c:-r._._.’;” M, ggg;
s s - (61)

We modify this solution by introducing a form parameter K(x) independent

of x, such that, for f; =fp =1 (witha + b + ¢ = 1), we have L. 1

Ts

{ L oa« (6Kt [,a-(c

)

N

o~

{

with a, b, ¢ according to egs.(59) - (61). For Pr = 1, eq.(62) is transformed §

into

T - ai(br ko)L r(c-Kep)la?
-7; = "!‘5 R 4

(63?

r.........-... o

18



The modified arguments (62) and (63) specifically have the property, required /18
oT \
ay /y=°

at a temperature gradient in the direction of flow, despite b

by Schlichting (Bibl.7), that a heat transfer [( # q} is still possible .

0, i.e., despite
T« = T. or, in the case of an incompressible flow, despite T, = Tg. Beyond

this, the 303{1%%2 or —.;%': compared to the conventional arguments with expan—%
isions in series to x, has the advantage that T, (x) and ug(x) can be arbitrary ,
functions of x and that this argument is directly valid for laminar and turbu- r
lent boundary layers. |

The relation (53) generalized on the basis of the argument (62), for the

heat transfer then reads

i
t

9 Kooy | |
e -5 STOC SR w

eJ u‘j

fhe proportionality between friction (¢ resp. ST) and heat flux (q) thus is
retained in this generalized theory despite the fact that, strictly, it can no %
longer be valid.

The unknown K(x) of the approximation theory, added to the existing 65 (x)
and H(x), requires an additional equation. Especially suitable is an integral
condition obtained by a partial integration of eq.(22) over y. This condition |

reads

+

EThe above equation is valid for arbitrary pressure and temperature gradients m‘
;the direction of flow [taking eq.(20) into consideration] as well as for arbi-

trary Prandtl numbers, in both laminar and turbulent boundary layers with [%2

!

19




variable physical constants. The equation also covers the influence of the
heat of friction (dissipation) which is considerable in a compressible flow.
For greater clarity of the solution method, we will restrict the calcula-
tion to the case of Pr = 1. If the characteristic quantities of the flow ‘
boundary layer, in first approximation, are assumed as known from calculating, E
in the conventional manner, with K =g (i.e., with the classical Reynolds f
analogy), the following differential equation of the first order (using a prime§

for the derivative to x) is obtained for K3’ :

7 j

K(z) +.K{"?,M ..fa’" = O.l (66)

«; /v o

P, = " |1+ S4 tx-1)M; ey (1o 2010 ) [o T (67)

| | H* -1 s, o B A
7 [A/ Aa‘, 1*J £ 1Ml | o 5

i | _La S0 fe- (68

#, o py ( 5 +(x-1) .r] )
with
(69)

(70)

(71?

(72)




and energy in a form found useful for practical calculations of incompressible

| e RN e VRS R
Then, the Mlaw of the conservation of momentum" reads

dT,

dp
dx dx

. u,
eq.(60)] and by —u%- [see eq.(14)]. The solution for K(x) and for the boundary-

The influence of and is expressed in @, and 9, by b [see /R0

\

layer quantities can be iteratively improved and thus will converge rapidly,
according to available data. It should be mentioned that, in this approxima-
tion theory, T, (x) can be prescribed in any form, so that - for example - no
expansion in powers of x is necessary.

For completeness, we are giving here the integral conditions for momentum

laminar and turbulent boundary layers. e it

Instead of the boundary layer thickness &6 (x), the following quantity is

introduced as parameter for the thickness of the flow boundary layer:

1 for laminar boundary layer
0.268 for turbulent boundary layer

o}
]

(75j§)

3
1]

fmth Bgusdy
E, B

! . /"V e (76;)

jI'he law of conservation of energy is written in the form of




Z H +P —-‘-'Fg‘-ﬁ ﬁO | (78)

Here, F, to F, are universal functions that are fixed by eqs.(68) - (73) with
eqs.(57), (58), or (62) that contain the parameters H, Mg, b (or 8), and K. Of

these, M;(x) and b(x) are known from the problem formulation. Details on this i

4
i

calculus, with more accurate data on the solution arguments for laminar and
turbulent boundary layers, as well as the empirical laws for wall shear stress i

and dissipation at turbulent boundary layer are given by M.Mayer (Bibl.lé).

7. Rotation-Symmetrical Boundary layer

Frequently, heat exchangers are built up of pipe systems with longitudinal

fflow, on whose inner or outer boundary the rotation-symmetric "start-up®

‘boumdary layer reaches a thickness after a certain running length, which is S

‘comparable to the pipe radius. In the extrusion of thermoplastic materials in |

Jet nozzles, the threads are exposed as thin cylinders to a longitudinal flow,
which stretches and cools them. The boundary layer thickness & may here reach

a multiple of the thread radius r,. Simultaneously, the gradients —ai}— and

d
:'E% my be high.

Here, technically important cases of rotation-symmetrical boundary layers f

i
1

@are involved, to which the above equation system for the flow and temperature

i

%boundary layers cannot be directly applied.

Under the assumption that the boundary layer thickness 6 remains small
65

w1th respect to the running length x ( < 1), the complication relative to

55

‘the standard theory is relatively minor. However, still another parameter

' )
‘occurs in the equations. At —é%— - 0, the equations (as is necessary) are

i
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transformed into the form for normal rotation-symmetrical boundary layers which
can be transformed to the two-dimensional case by using the Mangler transforma-
tion (Bibl.11).

In his thesis, M.Mayer (Bibl.12) developed integral conditions for mo- ng

1

Lmentum and energy from the partial differential equations valid for our case

;and then worked up all universal functions in these equations for compressib1e§
laminar and turbulent boundary layers, based on the improved argument (63) for
the temperature boundary layer with the auxiliary unknowns K(x). In the case
of a laminar boundary layer, the velocity profiles of Hartree (Bibl.13) were

assumed, while Mpower profiles™ were used in turbulent boundary layers.

8. Examples
8.1 Two-Dimensional Flow

8.11 Flow along a Plane Plate (uk = ) with Temperature Gradient

8.111 laminar Boundary layer with Constant Physical Constants Pr = 1

This example had been treated by H.Schlichting (Bibl.9). The temperature
differences Ty - Tg or - using the relations of our approximation theory - the
values b of eq.(60) are assumed as being so small that the physical constants

‘can be assumed as -g%— = 1. In that case, the normal flow boundary layer of

the plane plate, with Blasius'! solution (Bibl.10) for the velocity profile, can!

1

@e considered as known. Schlichting selected a solution argument for T(x, y)

| ‘

_according to powers of the running length % with coefficients that are func-
%tions of the wall distance y, which has been made dimensionless. For each co-

%efficient, this will yield a linear ordinary differential equation of the 2

ésecond order which,vas a rule, can be solved by numerical integration. The

éseries was terminated at the term quadratic in —f—. However, this does not in-|
E : . : . - ; SR
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terfere with the accuracy of the theory and merely restricts the applicability
range to temperature distributions T,(x) up to at most a parabolic character.
In the case of a linear distribution of the wall temperature in accordance with

the relation

I it 2 S T

and a Prandtl number of Pr = 1, Schlichting obtained the foli&ﬁing expression

for the local heat flux:

~ 41 e
AT VR, = 0.332(2X) 7 _ g.06 ()3, ‘

ii
Solution of the same problem under the same assumptions and using the above-

developed approximation theory, will furnish the following result after a close@

‘integration of eq.(66) with H = 1.572 = const, according to M.Mayer (Bibl.12): .

4 % L T
= L. 13 . . — § :
Py 0.332( %) 4.453(7-) (@)
L |

x

Both solutions are plotted in Fig.3 against the running length - The devia-

L
tion of the approximation solution from Schlichting'!s solution is minimal. An %

iinteresting roint in this result is - as already mentioned by Schlichting
;(Bibl.9) - that the heat flux q(x) is not zero at the point at which the tem-

perature T, - T vanishes, namely, at -%} = 0.5, but farther upstream at —%% =
E= 0.288'(0.313 according to Schlichting). Figure 4 shows the temperature pro- i

files, calculated from eq.(63), at the points -%} = 0.288 and 0.5, which illus-

%trate this statement.

In the case of a parabolic distribution (increase) of the wall temperature;

@in accordance with the law

1




T %] Twie) Y X 2 ‘

—_—m | ——— 2 = -(X
7 ( 7 (2% -£]"), (82)

the results according to Schlichting (Bibl.9) will read

T | % /.
_ - X 2" ¢ |
T T =A06(L] " ~ 0626 [2)77 g3}
L it 3
A =5 (R T (e3)

while, according to the new approximation theory [with a closed integration of

eq.(66)], they will read

(84)

Figure 5 shows that the result of these two calculations differs very slightly
but that the error with respect to the calculation at constant wall temperature%
i'15 considerable. For a more detailed discussion of the results, Schlichting's

}repox'b should be consulted (Bibl.9).

8.112 laminar Boundary layer with Variable Physical Constants,
Incompressible Flow, Pr = 1, u~ T%, @ = 0.7

The results for the cases mentioned in Section 8.111 are applicable here
’(as mentioned before) only for such small temperature differences T, - Ty or foi*

values b differing so little from zero that the physical constants can be as-
|

%sumed as being invariant. However, our theory permits a treatment of cases

Tw (0)
Ts

:ift.ion of the temperature boundary layer on the flow boundary layer takes place

?with such large values of the parameter b or of the ratio that a reac-

[~

also in the case of an incompressible flow. However, in this case, the solutio

'is possible only by a numerical integration of the simultaneous system of equa-

iitions; 66), (77), (78). Figure 6, for the example of eq.(79}, shows the influ-
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ence of T, (o) on g(x). Accordingly, the point (—{—) , within the investi-
\ q=0

gated range of values 1 < —-?—"Té—o-)— < 1.5, remains practically unchanged at about

0.288. The local heat flux q(x) does not decrease with increasing value of

T (0) Tw (0)
TTs T

Ais thus negligible.

. For < l.1, the influence of the variable physical constants @j

8.113 laminar Boundary layer with Variable Physical Constants,
Compressible Flow, M = 3.0, Pr = 0.72, 4 ~ T (w = 1)
[Chapman-Rubesin Example (Bibl.6)]

In this classical test example, the system of equations (66) - (78) must
be used as basis, without the terms containing the factor u'é (because of u'{5 =
= Q) but under consideration of the compressibility terms (Mach-number terms).
3 Figure 7 gives the calculation result in comparison with the exact solu-
7 fﬁtion. The agreement is satisfactory. 1In addition, we plotted the computa- ;
‘tional data obtained according to the approximation theory of "ﬁéffis-shxith o
(Bibl.11), which deviates considerably from the exact solution. The curve of
the heat flux at constant wall temperature T, , plotted in Fig.7, indicates the |
excessive error that might appear when the temperature gradient 1?%— is ne-
iglected.

8.1l Turbulent Boundary layer, Invariant Physical Constants,
Incompressible Flow, Pr = 1

In this example, a closed integration of eq.(66) for K(x) is also possible.

;Well—known empirical laws apply here to the velocity profile and to the frictio:

=]

coefficient c; [see, for example, J.Rotta and H.Fernholz (Bibl.16, 17)]. In
the case of a linearly varying wall temperature in accordance with eq.(79),

which will be the case discussed here, we have

2%




qixl,)

(see Fig.8). A vanishing heat flux is obtained here at about —%‘- = -%r, /26

{

gi.e., approximately at the same point as in the laminar boundary layer (see
:Fig.B). Merely the distribution law for q{ Tf) is different (different powers
of —%—- and of R.). In addition, there exists a minor dependence of the result
on the form factor H [eq.(74)] of the velocity profile. For 10° < R, < 107,
the value of H is located approximately within the range of 1.70 < H < 1.85.
The absolute values of g, in the case of a turbulent boundary layer, may

be several orders of magnitude higher in the mentioned R, region (because of th

B ]

T jl'x:lgher values c¢) than in the case of a laminar boundary layer, as clearly indi:

‘cated by a comparison of eq.(85) with eqs.(80) or (81).
The author never has encountered comparative tests for checking these
‘computational data.
8.12 Flows with Pressure Gradient (u'6 # O) but with Constant Wall

Temperature T._= const, Invariant Physical Constants,
Pr = 1, laminar Boundary layer

In the examples discussed in Section 8.11, the influence of a wall tem—
épera.ture T« (x), varying in the direction of flow, on the heat transfer was in- |
o ji“vestigated. It was found that this efféct » which had been neglected in the

' 'Eexact solution of Crocco - van Driest (Bibl.,, 5), may be considerable.

7 We will next have to demonstrate the influence of a pressure gradient in
éthe direction of | flow, a point that had also been neglected in the above exact

| theory. In this case, the wall temperature T, is kept constant (for separating

dT,
dx

; d :
the influence factors and di ). The temperature differences T. - Tgs




(s =0),

occurring during the heat transfer, are assumed so small (as in the case of the
plane plate in Section 8.111) that the physical constants can be considered in-
variant and the flow boundary layer as independent of the temperature boundary
.layer. |
| For this investigation, the "similar solutions™ of the incompressible ﬁz
‘la.minar boundary layer, at potential flows of the type u ~ x*, are especially |
suitable. !

According to the exact solution by D.R.Hartree (Bibl.13), the form factor .
H = H(m) of the velocity profile is constant for each value of the exponent m, |

i.e., H' = 0. For the parameter Z(x) of eq.(75) (for the thickness of the

boundary layer), eq.(77) will then yield, because of H = const and T, = 0

i Z(x}_._F..F’F‘.’ X
: 'Z" (2 HG)L

The thickness of the momentum loss will thus become

oL a5 7 -

(87)
With these results, a closed solution of eq.(66) for K(x) becomes possible.
According to an elementary calcula.tion, we obtain
| e
Y 1 + Ju ey

b g m(lll
2

In Flg 9, -5— is plotted against H(m).
‘ For the case of a plane plate with m = O, we obtain K = 0, as required.

In the case of an accelerated flow at m > O, the quantity -g— is negative so

that the heat flux, according to eq.(6L), will be smaller than in a flow with-
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tained by suitable electric heating.

out pressure gradient (m = O). In the case of a decelerated flow (pressure
rise), at m < 0, the heat transfer is improved over the case of m = O.

In the case of a considerable pressure rise, the variation in heat transfer
is considerable. We have scheduled to make a check on this rather surprising
and practically significant result, using a difference method and actual meas- |

urements.

8.2 Rotation-Symmetrical Flow /28

For checking the above theory, tests on the temperature boundary layer by
E.R.G.Eckert, R.Eichhorn, Th.L.Eddy (Bibl.18) are available, who made studies |
on a cylinder in longitudinal flow “'6 =0 (-g—xp— = ), with a temperature gradl-
;ent. in the direction of flow. Cases with both laminar and with turbulent flow

boundary were investigated. The variation in wall temperature T, (x) was ob-

Figures 10 and 11 show two distributions of the parameter b(x) = 1 -
- —%)—, adjusted to (measured) a laminar boundary layer, together with the
distributions b(x) + K(x) calculated on the basis of the theory by M.Mayer
(Bibl.12). Figures 12 and 13 give a comparison of the measured temperature :
ﬁotmdary layer and of the boundary layer T(y) - Ty calculated from eq.(63), for
two points x of the cylinder surface. The improvement of the theory, obtained
1by introduction of the new parameter K(x), was considerable.

A corresponding comparison for turbulent boundary layers has been made in
%Figs.ll; - 17. Obviously, the new theory results in a better agreement with the
;best data, specifically in the vicinity of the wall (which is decisive for a

écorrect reproduction of the heat transfer).

Finally, Fig.18 shows the result of applying the boundary layer theory to
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an example with rotation-symmetric flow and considerable variations in the
physical constants, in which the boundary layer thickness 6s is large compared
with the cross-sectional radius r, of the body in longitudinal flow (see
Sect.7). Here, a smelting jet (scoria), ejected from a platinum nozzle and
exposed to longitudinal flow, having a mean temperature of about 1400°C, was
‘involved. The shear forces of a blast jet, flowing at a velocity of about
200 m/sec, attack the surface of this smelting jet and cause its distortion.

A combination of these shear stresses with the internal strains of the viscous :
smelting jet determine the course of the cross-sectional radius r,(x) in the
direction of flow. The calculation of the cross-sectional radius r, as a /29
function of the running length x, performed by M.Mayer (Bibl.l2), is in satis- ;
factory agreement with the experimental result (according to Fig.18) and thus
:represents an indirect proof for the usefulness of the above-developed approxi-g

mation theory.

9. Summary

For solving the problems of heat transfer, as posed by the high-velocity
aerodynamics of aeronautics and cosmonautics as well as by modern heat-exchange;
jand manufacturing technology, the classical theories and computation methods
;based primarily on Nusselt's work are generally no longer sufficient. The ef-
%fect of temperature gradients in the direction of flow, which was neglected in

%these theories, has been proved as appreciable in basic investigations by

Chapman-Rubesin (Bibl.6) and Schlichting (Bibl.9) for the case of laminar

%boundary layers.

An approximation theory is developed for covering the effect of such tem-

'perature gradients at arbitrary slope of the wall temperature T, (x), which is

30




simultaneously applicable to both incompressible and compressible turbulent '
boundary layers.

The theory also demonstrates (for similar solutions of laminar boundary
layers), in an analytically definable form, that the influence of a pressure |
gradient gi in the direction of flow on the heat transfer, which also had beep
neglected in the classical theory of heat transfer, might be appreciable.

It is characteristic for this theory that no expansions in series are re-
quired for the temperature profile and for the velocity profile of the boumlary%
layer, which would have to be adapted to each example. In the solution argumenit
for the temperature and velocity profile, the basic structure of conventional ;
exact solutions is retained and one free parameter each, for adaptation to Lﬂ

general problematics and boundary conditions, is introduced. Thus, the approxi

-mation theory, in addition to the boundary layer thickness (momentum loss thick!

ness), contains only a form factor H(x) as the unknown for the veloclty proflle‘
and a ™modification parameter® K(x) as the unknown for the temperature profile.%

For determining these three unknowns, a simultaneous system of three ordi-%
nary differential equations of the first order is used (integral conditions for
‘mmentum, mechanical energies, and total energy). In the two energy equations ’
the work done by the shear stresses (dissipation) is fully considered. In im- I
-portant special cases, closed solutions of this system are possible (see E
éSect.B.l). In general, a numerical solution must be performed according to :
%conventional procedures.
‘ Typical calculation examples are given for demonstrating the general appli%—
Ecability and usefulness of the approximation theory.
| For performing and checking the calculation samples, the author wishes to |

i
!
t
i
i
|
'
i
i
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FIGURE TITLES /33

Figs.l and 2 Functions f; and f; according to Egs.{(37) - (40) Plotted against

the Dimensionless
AWall Distance 7 of the Blasius Solution, for the Flow along a

Plane Plate, with the Prandtl Number Pr as Parameter.

Fig.3 Plane Plate in Longitudinal Flow, with Linearly Varying Wall Temperature

m

¥ (—’;—) according to Eq.(79). Assumptions: Laminar Boundary layer,

!

Ts
Invariant Physical Constants p, b, A, and Pr = 1. Slope of the Local
Heat Flux a(x) Plotted against the Running Length -X-.

Comparison with Schlichting's Result (Bibl.9) Given by Broken Line.

Fig.l Temperature Profiles 'rT - 1 of the Example in Fig.3, at the Points
X 6 Tw{o)
—_— = 00%8 am 0050 fOI' = lﬂlo
L T

EFig.5 Plane Plate in longitudinal Flow, with Parabolic Distribution of the

Wall Temperature —— (_x_) according to Eq.(81). Assumrtions: laminar

Ts L
Boundary layer, Invariant Physical Constants p, 4, A, and Pr = 1. Slope
x
of the Local Heat Flux q; /L) T Plotted against the Running
(o) T %6 |
- /Ry

Length. Comparison with Schlichting's Result (Bibl.9) Given by Broken
Line. Calculation Result for Ty = const, Dot-Dash Line.

Fig.6 Generalization of the Example in Fig.3: Influence of the Parameter
Tw (0)
: Ts

- Fig.7 Plane Plate in Longitudinal Flow, with Temperature Gradient in the

of Eq.(79) on the Local Heat Flux q(x).

Direction of Flow. Assumptions: Laminar Boundary layer, Compressible

L)

Flow, Mach Number M_ = Mé = 3.0, Pr =1, p ~ T. Comparison with Chapman:
Rubesin's Exact Solution (Bibl.6) and with Morris-Smith's Approximation

Sclution (Bibl.l1).




Fig.8 Plane Plate in Longitudinal Flow with Linearly Varying Wall Temperé— /3L
ture, according to Eq.(79). Assumptions: Turbulent Boundary layer of
-%} =0Ouptol. Pr=1.

Fig.9 Influence of a Pressure Gradient on the Heat Transfer at Constant Wall
Temperature, Ty = const. Assumptions: Laminar Boundary layer, Similar

Solutions for us(x) ~ ¥, Invariant Physical Constants, Pr = 1.

T (x)
Tg

on a Cylinder in Longitudinal Flow, according to Eckert (Bibl.18), and

'Figs.lo and 11 Examples of a Wall Temperature Distribution b(x) = 1 -

Calculated Distribution of the Function b + K in the Case of a Laminar |
Boundary layer. |

bFigs.12 and 13 Comparison of the Temperature Profiles T(y) - Ty s Calculated

for the Temperature Distributions b(x) of Figs.l0 and 11, with Eckert's]

j Experiments (Bibl.18). }
fFigs.]l.. a.nd 15 meﬁples of a Wall Temperature Distribution b(x)= 71 - Deix)
| on a Cylinder in Longitudinal Flow, according to Eckert (Bibl.18), and
Calculated Distribution of the Function b + K in the Case of Turbulent
Boundary layer. |
:Figs.lé and 17 Comparison of the Temperature Profiles T(y) - Ts, Calculated |
| for the Temperature Distributions b(x) of Figs.ll and 15, with Eckert'si
, Experiments (Bibl.18).
gFig.18 Boundary layer Theoretical Calculation of the Distortion of a Smelting ,i

Jet in a Blast Jet, according to M.Mayer (Bibl.12).
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Fig.7 Plane Plate, Laminar, Compressible Flow M, = 3.0, Pr =

Tw
= 0.72, b~ Ty, ® = 1, Wall Temperature Slope _T_(x_)_ = 1.25 -
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' - 0.83 x_ + 0.33 k-{- ) - Comparison with the Exact Solution

by Chapman-Rubesin (Bibl.6) and with the Approximation
Solution by Morris-Smith (Bibl.11)
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.Eckert's Experiment (Bibl.18)

Fig.12 Temperature Profile T(y) - T

Fig.10, at laminar Boundary layer.
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Fig.13 Temperature Profile T(y) - Tg, Calculated for
Eckert's Experiment (Bibl.18)

Fig.1ll, at laminar Boundary layer.
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Fig.18 Boundary layer Theoretical Calculation of the Distortion of
a Smelting Jet in a Blast Flux, according to M.Mayer (Bibl.12)
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